26 research outputs found

    Action Sets: Weakly Supervised Action Segmentation without Ordering Constraints

    Full text link
    Action detection and temporal segmentation of actions in videos are topics of increasing interest. While fully supervised systems have gained much attention lately, full annotation of each action within the video is costly and impractical for large amounts of video data. Thus, weakly supervised action detection and temporal segmentation methods are of great importance. While most works in this area assume an ordered sequence of occurring actions to be given, our approach only uses a set of actions. Such action sets provide much less supervision since neither action ordering nor the number of action occurrences are known. In exchange, they can be easily obtained, for instance, from meta-tags, while ordered sequences still require human annotation. We introduce a system that automatically learns to temporally segment and label actions in a video, where the only supervision that is used are action sets. An evaluation on three datasets shows that our method still achieves good results although the amount of supervision is significantly smaller than for other related methods.Comment: CVPR 201

    Weakly Supervised Action Learning with RNN based Fine-to-coarse Modeling

    Full text link
    We present an approach for weakly supervised learning of human actions. Given a set of videos and an ordered list of the occurring actions, the goal is to infer start and end frames of the related action classes within the video and to train the respective action classifiers without any need for hand labeled frame boundaries. To address this task, we propose a combination of a discriminative representation of subactions, modeled by a recurrent neural network, and a coarse probabilistic model to allow for a temporal alignment and inference over long sequences. While this system alone already generates good results, we show that the performance can be further improved by approximating the number of subactions to the characteristics of the different action classes. To this end, we adapt the number of subaction classes by iterating realignment and reestimation during training. The proposed system is evaluated on two benchmark datasets, the Breakfast and the Hollywood extended dataset, showing a competitive performance on various weak learning tasks such as temporal action segmentation and action alignment

    In-Style: Bridging Text and Uncurated Videos with Style Transfer for Text-Video Retrieval

    Full text link
    Large-scale noisy web image-text datasets have been proven to be efficient for learning robust vision-language models. However, when transferring them to the task of video retrieval, models still need to be fine-tuned on hand-curated paired text-video data to adapt to the diverse styles of video descriptions. To address this problem without the need for hand-annotated pairs, we propose a new setting, text-video retrieval with uncurated & unpaired data, that during training utilizes only text queries together with uncurated web videos without any paired text-video data. To this end, we propose an approach, In-Style, that learns the style of the text queries and transfers it to uncurated web videos. Moreover, to improve generalization, we show that one model can be trained with multiple text styles. To this end, we introduce a multi-style contrastive training procedure that improves the generalizability over several datasets simultaneously. We evaluate our model on retrieval performance over multiple datasets to demonstrate the advantages of our style transfer framework on the new task of uncurated & unpaired text-video retrieval and improve state-of-the-art performance on zero-shot text-video retrieval.Comment: Published at ICCV 2023, code: https://github.com/ninatu/in_styl

    WEAR: A Multimodal Dataset for Wearable and Egocentric Video Activity Recognition

    Full text link
    Though research has shown the complementarity of camera- and inertial-based data, datasets which offer both modalities remain scarce. In this paper we introduce WEAR, a multimodal benchmark dataset for both vision- and wearable-based Human Activity Recognition (HAR). The dataset comprises data from 18 participants performing a total of 18 different workout activities with untrimmed inertial (acceleration) and camera (egocentric video) data recorded at 10 different outside locations. WEAR features a diverse set of activities which are low in inter-class similarity and, unlike previous egocentric datasets, not defined by human-object-interactions nor originate from inherently distinct activity categories. Provided benchmark results reveal that single-modality architectures have different strengths and weaknesses in their prediction performance. Further, in light of the recent success of transformer-based video action detection models, we demonstrate their versatility by applying them in a plain fashion using vision, inertial and combined (vision + inertial) features as input. Results show that vision transformers are not only able to produce competitive results using only inertial data, but also can function as an architecture to fuse both modalities by means of simple concatenation, with the multimodal approach being able to produce the highest average mAP, precision and close-to-best F1-scores. Up until now, vision-based transformers have neither been explored in inertial nor in multimodal human activity recognition, making our approach the first to do so. The dataset and code to reproduce experiments is publicly available via: mariusbock.github.io/wearComment: 12 pages, 2 figures, 2 table
    corecore